Role of *Chlamydia pneumoniae* in Acute Respiratory Tract Infections, Excluding Pneumonias

David L. Hahn, MD

Director for Research Project Development
Wisconsin Research Network
Department of Family Practice
Dean Medical Center
Madison, Wisconsin
and
Clinical Professor of Medicine
Department of Medicine
University of Wisconsin Medical School
Madison, Wisconsin

Introduction

Chlamydia pneumoniae infection was first associated with community-acquired pneumonia (CAP) in 1985 and is now recognized as the third or fourth leading cause for CAP, accounting for about 10% of all cases of pneumonia worldwide. Acute infection with *C. pneumoniae* can also cause a broad range of upper and lower respiratory tract illnesses other than pneumonia. The purpose of this article is to review these non-pneumonic manifestations of acute *C. pneumoniae* infection, current laboratory techniques for diagnosis, and therapy.

Epidemiology

Seroprevalence studies indicate that infection with *C. pneumoniae* is common worldwide. In most populations, antibody prevalence is low in children below the age of five, rises rapidly throughout the school years and then persists throughout adulthood. In Seattle, Washington, for example, the seroconversion rate is 9% per year for children aged 5 to 9. Seroprevalence rates for children in some more densely populated countries, such as Japan, are even higher than in the United States and Western European countries. The seroprevalence patterns for *C. pneumoniae* and *Chlamydia trachomatis* are distinctly different. *C. trachomatis* antibodies are found in a minority of sexually active young adults but only rarely in older adults. Unlike *C. trachomatis*, *C. pneumoniae* seroprevalence persists and even continues to increase in older age groups, suggesting that reinfections or persistent infections are common for this organism throughout the human life span.

Prospective studies on stored sera show that the majority of seroconversions (up to 70%) are not associated with any significant complaints of respiratory illness. Thus, acute infections may often be asymptomatic or are associated with trivial respiratory symptoms that do not trigger a medical encounter. The remainder of acute *C. pneumoniae* infections are associated with a wide variety of acute respiratory illnesses that will be reviewed in this article (Tables 2–6). Person-to-person spread appears to be slow and inefficient, at least under the living conditions experienced in Western industrialized societies. Mean time between illnesses has been reported as 28 days with the most frequent intervals being 17 to 23 days, suggesting that the true incubation period is about 3 weeks.

Diagnosis

Diagnostic techniques include organism identification and serologic testing (Table 1). Cell culture requires fastidious specimen handling, as the organism will be rendered nonviable if not cultured immediately, or slow frozen for later processing. Polymerase chain reaction (PCR) testing shows promise as the most sensitive detection method, but its use is currently limited to research laboratories. Direct immunofluorescence (DIF) testing is commercially available to detect *C. trachomatis* and preliminary evidence suggests that DIF may also be useful in rapid detection of *C. pneumoniae* in throat and sputum secretions. The most widely used serologic method is the microimmunofluorescence (MIF) technique originally developed by Wang and Grayston to study *C. trachomatis*. The MIF technique is species-specific, that is, it can distinguish seroreactivity due to the different species of chlamydia. However, the MIF test is time consuming, expensive, requires a trained microscopist, and is not widely available outside research settings. The genus-reactive chlamydia complement fixation (CF) test that is used to diagnose acute infection with *Chlamydia psittaci* (psittacosis) will be positive only in acute primary *C. pneumoniae* infections.
cause many acute adult infections are secondary (reinfections), the CF test is relatively insensitive in older age groups.

Serodiagnostic criteria for acute infection are outlined in Table 1. All would agree that a fourfold antibody titer rise in specimens taken at least 4–6 weeks apart is indicative of acute infection. Most would agree that presence of species-specific IgM antibody also indicates acute infection, or at least recent exposure, since IgM may persist for some months but then disappears. Several studies of young and middle aged adults with acute respiratory illnesses (bronchitis and pneumonia) also show excellent (but not perfect) agreement between organism identification and the presence of IgG antibody titers of 1:512 or greater. Good agreement between these serologic criteria for “acute antibody” and organism detection have been confirmed for children and teenagers with acute respiratory illnesses.

There are two caveats to consider when interpreting the serologic criteria presented in Table 1. First, some persistently culture-positive children with acute respiratory conditions have not developed antibody, even over many months of observation. Recently, other prospective observations have confirmed that seroconversion after infection (as defined by organism detection) may be delayed for over a year in some children. Also, a recent study of Swedish children attending daycare centers found a PCR positive prevalence rate of 23%, well above previously reported seroprevalence rates for young children. Taken together, these data suggest that development of serum antibody after acute infection in young children may sometimes be delayed. Second, some asymptomatic, culture-negative (naso- or oropharynx) adults from the general population have persisting IgG antibody titers of 1:512 or greater. This finding may be related to the high prevalence of C. pneumoniae DNA detected in peripheral blood mononuclear cells in patients with cardiovascular disease and in middle-aged blood donors. Thus, IgG titers of 1:512 or greater in asymptomatic adults may be due to persistent deep tissue infection and should not be interpreted as evidence of acute infection.

TABLE 1. Diagnostic Criteria for Acute Chlamydia pneumoniae Respiratory Tract Infection

<table>
<thead>
<tr>
<th>Organism Identification</th>
<th>Serologic Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell culture</td>
<td>Species-specific microimmunofluorescence (MIF) test:</td>
</tr>
<tr>
<td>Polymerase chain reaction (PCR) test</td>
<td>4-fold or greater increase in IgM, IgA and/or IgG(0):</td>
</tr>
<tr>
<td>Immunofluorescent assays (DFA, IFA)</td>
<td>Single IgM titer ≥1:160</td>
</tr>
<tr>
<td></td>
<td>Single IgG titer ≥1:512</td>
</tr>
</tbody>
</table>

Primary (first exposure) Infection:
- Presence of IgM, later appearance of IgG

Secondary (re-exposure) Infection:
- No IgM, rapid rise in IgG

| Organism identification in the absence of serologic criteria may indicate chronic infection (all ages) or delay in acute antibody formation (children). |

Non-pneumonic Respiratory Manifestations of Acute Chlamydia pneumoniae Infection

Table 2 illustrates the spectrum of non-pneumonic acute respiratory illnesses that can be caused by acute C. pneumoniae infection. Data in Table 2 is presented as the percentage of identified acute C. pneumoniae infections that resulted in a particular respiratory syndrome (bronchitis, otitis, pharyngitis, sinusitis, etc.). The denominator for each percentage is the total number of acute C. pneumoniae infections diagnosed in each of eight selected studies from North America, Europe, and Japan that also reported on the occurrence of a variety of illness manifestations (total of 477 cases of infection). For comparison, the proportions of pneumonia are also presented.

For most studies, pneumonia predominated and bronchitis was also common. Pharyngitis commonly accompanied manifestations of lower respiratory tract illness (LRTI), but was less common as a sole manifestation of acute infection. Laryngitis is also fairly common, but tonsillitis is rare. A clinical diagnosis of sinusitis also accompanied C. pneumoniae LRTI but was not as common as pharyngitis. Otitis media was less commonly reported but did occur. The relatively wide study-to-study variation in reported prevalence of these conditions probably reflects the heterogeneity of settings (population-based, primary care, referral practices), age groups, geographical sites, time periods, and (possibly) diagnostic methods used, among other factors.

Clinical Characteristics of C. pneumoniae Acute Respiratory Infections

In general, respiratory illnesses caused by acute C. pneumoniae infection are indistinguishable from illnesses caused by respiratory viruses and by Mycoplasma pneumoniae. C. pneumoniae can cause acute respiratory symptoms characterized as a “biphasic illness”: first, acute pharyngitis that is sometimes severe (with or without laryngitis) followed by a brief period of improvement followed by LRTI. The sensitivity and specificity of the “biphasic illness” presentation for the presence of acute C. pneumoniae infection is unknown, however.
Many studies in the outpatient setting document that, compared to other etiologies, *C. pneumoniae* causes a more indolent respiratory illness that is slower to develop to the degree of severity likely to trigger a medical encounter. Thus, a long duration or persistent respiratory symptoms prior to seeing a physician increases the likelihood that *C. pneumoniae* “clues” can benefit patients with respiratory illnesses.

Family Outbreaks

Excellent examples of the protean manifestations and presentations of *C. pneumoniae* infection may be found in descriptions of documented family outbreaks.

TABLE 2. Clinical Manifestations of Acute *Chlamydia pneumoniae* respiratory infection in Selected Patient Populations (% of *C. pneumoniae* infections with the clinical manifestation)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Population</th>
<th>Pneumonia</th>
<th>Bronchitis</th>
<th>Otitis media</th>
<th>Pharyngitis/Laryngitis/Tonsillitis</th>
<th>Sinusitis</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grayston, 1988</td>
<td>30 Adult student outpatients from Seattle, Washington</td>
<td>40</td>
<td>47<sup>c</sup></td>
<td>7 (30)<sup>b</sup></td>
<td>3 (17)<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleemola, Saikku, et al. 1988</td>
<td>69 Young Finnish military conscripts during 4 pneumonia epidemics</td>
<td>99</td>
<td>1 (20)<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frydén, Khilstöm, et al. 1989</td>
<td>90 Swedish patients with "ornithosis" later confirmed as C. pneumoniae</td>
<td>61</td>
<td>30<sup>c</sup></td>
<td></td>
<td>(18)<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hahn, Dodge, et al. 1991</td>
<td>19 Adult outpatients from Madison, Wisconsin</td>
<td>16<sup>c</sup></td>
<td>84<sup>c</sup></td>
<td>(37)<sup>b</sup></td>
<td>(16)<sup>b</sup></td>
<td>Influenza-like illness (26)<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Hashiguchi, Ogawa, et al. 1992</td>
<td>39 Patients at an ENT outpatient clinic in Tokyo, Japan</td>
<td></td>
<td>33</td>
<td>15</td>
<td>46</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Thom, Grayston, et al. 1994</td>
<td>21 Middle-aged and older outpatients from Seattle, Washington</td>
<td>10<sup>c</sup></td>
<td>57<sup>c</sup></td>
<td>10</td>
<td>14</td>
<td>URI (5), FUO (5)</td>
<td></td>
</tr>
<tr>
<td>Falck, Heyman, et al. 1994</td>
<td>33 Mainly adult Swedish outpatients</td>
<td></td>
<td>3</td>
<td>58</td>
<td>21</td>
<td>6</td>
<td>Rhinitis (9), Conjunctivitis (3)</td>
</tr>
<tr>
<td>Berdal, Scheel, et al. 1997</td>
<td>176 Norwegian patients identified during a respiratory epidemic</td>
<td>36</td>
<td>84 (cough)</td>
<td></td>
<td>32</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

^aPrimary clinical diagnosis.
^bIn addition to the primary clinical diagnosis of bronchitis or pneumonia.
^cSome patients also had wheezing.

pneumoniae infection will be identified. In one study, a predictor of *C. pneumoniae* etiology (compared with respiratory viruses and *M. pneumoniae*) was the presence of abnormal breath sounds auscultated on physical examination. It is unknown whether acting on these clinical

Family #1

Yamazaki et al. reported on two culture-positive Japanese sisters, aged 5 and 3, who had pneumonia/otitis and acute bronchitis, respectively. The 5-year-old (index case) had 7 weeks of persistent cough without fever and otalgia unresponsive to beta-
lactam treatment before she was referred and *C. pneumoniae* was isolated. She improved but *C. pneumoniae* was isolated persistently post-treatment, whereas her 3-year-old sister became culture-negative after treatment that improved her bronchitis.

Family #2

Ghosh et al. reported on three serologically diagnosed family members, aged 10, 30, and 33 years of age, who developed prolonged respiratory illnesses that did not improve despite beta-lactam and sulfonamide therapy. The 30-year-old husband had sore throat, hoarseness and fever, and was off work for 3 weeks. Despite penicillin treatment, symptoms worsened with development of sinusitis and impaired hearing. After a 10-day course of tetracycline therapy (500 mg, four times daily) he made

TABLE 3. Proportion of Bronchitis Attributed to Acute *Chlamydia pneumoniae* Respiratory Infection in Selected Patient Populations (% of bronchitis caused by *C. pneumoniae* infection)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Population</th>
<th>Total cases of bronchitis (diagnostic tests used)</th>
<th>No. (%) due to Chlamydia pneumoniae</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grayston, Kuo, et al. 1986</td>
<td>University students from Seattle, Washington</td>
<td>63 (culture, acute antibody)</td>
<td>3 (5)</td>
<td>A biphasic presentation (severe sore throat and/or laryngitis later followed by cough) or wheezing were described</td>
</tr>
<tr>
<td>Katzman, Tipton, et al. 1991</td>
<td>University students from Berkeley, California</td>
<td>151 (culture, acute antibody)</td>
<td>2 (1)</td>
<td>Same as above. Conjunctivitis was also described in both cases</td>
</tr>
<tr>
<td>Hahn, Dodge, et al. 1991</td>
<td>Mainly adult outpatients from Madison, Wisconsin</td>
<td>338 (culture, acute antibody)</td>
<td>16 (5)</td>
<td>Sore throat, laryngitis and wheezing were common accompaniments. A biphasic presentation was sometimes noted</td>
</tr>
<tr>
<td>Ogawa, Hashiguchi, et al. 1992</td>
<td>Hospitalized children and adults, Japan</td>
<td>85 (acute antibody)</td>
<td>19 (22)</td>
<td></td>
</tr>
<tr>
<td>Hashiguchi, Ogawa, et al. 1992</td>
<td>Patients at an ENT outpatient clinic in Japan</td>
<td>57 (acute antibody)</td>
<td>13 (23)</td>
<td>Only 1/38 asymptomatic controls had acute antibody</td>
</tr>
<tr>
<td>Thom, Grayston, et al. 1994</td>
<td>Middle-aged and older outpatients from Seattle, Washington</td>
<td>267 (PCR, acute antibody)</td>
<td>12 (5)</td>
<td>Wheezing noted in 25%. One patient developed persistent symptoms of new reactive airways disease</td>
</tr>
<tr>
<td>Ni, Wang, et al. 1995</td>
<td>Mainly adult patients from Beijing, China</td>
<td>81 (acute antibody)</td>
<td>6 (7)</td>
<td>Chronic bronchitis was statistically more frequent in patients with C. pneumoniae infection than those without (p=0.05)</td>
</tr>
<tr>
<td>Wright, Edwards, et al. 1997</td>
<td>Adults presenting to the Vanderbilt University emergency department</td>
<td>65 (acute antibody)</td>
<td>13 (20)</td>
<td>All patients in this study had persistent cough lasting 2 weeks or more prior to enrollment; 20% also had evidence of pertussis</td>
</tr>
<tr>
<td>Jonsson, Sigurdsson, et al. 1997</td>
<td>General practice adult population in Iceland</td>
<td>140 (acute antibody)</td>
<td>1 (1)</td>
<td></td>
</tr>
</tbody>
</table>

in the month preceding their parents' illnesses; all had serologic evidence of previous C. pneumoniae infection.

Family #3

Blasi et al. reported on eight members of two Italian families, six of whom seroconverted and/or had C. pneumoniae identified on pharyngeal swabbing. These six became ill while two other family members did not seroconvert and remained well. Clinical manifestations ranged from pneumonia and bronchitis (with and without pharyngitis) to a few days of dry cough that resolved without treatment. Only one patient showed a biphasic illness presentation. Again, respiratory illnesses were sometimes resistant to treatment with beta-lactams but macrolides were effec-

TABLE 4. Proportion of Otitis Media Attributed to Chlamydia pneumoniae Respiratory Infection in Selected Patient Populations (% of otitis caused by C. pneumoniae infection)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Population</th>
<th>Total cases of otitis media (diagnostic tests used)</th>
<th>No. (%) due to Chlamydia pneumoniae</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hashiguchi, Ogawa, et al. 1992</td>
<td>Children and adults seen at an ear, nose and throat outpatient clinic in Tokyo, Japan</td>
<td>34 (acute antibody)</td>
<td>6 (18)</td>
<td>Only 1 (3%) of 38 healthy controls had acute antibody. All serologically diagnosed patients improved with macrolide or tetracycline therapy</td>
</tr>
<tr>
<td>Ogawa, Hashiguchi, et al. 1992</td>
<td>Children and adults seen at an ear, nose and throat department in Tokyo, Japan, with otitis media with effusion (OME)</td>
<td>43 (culture of middle ear aspirates)</td>
<td>6 (14)</td>
<td>Cephalosporins and norfl oxacin were ineffective; macrolides and doxycycline were effective in alleviating symptoms</td>
</tr>
<tr>
<td>Ah Goo, Hori, et al. 1995</td>
<td>Children aged 6 months to 12 years referred to a Washington State community hospital for myringotomy or tympanostomy tube placement (OME)</td>
<td>75 (PCR, culture and serology of middle ear aspirates)</td>
<td>0 (0)</td>
<td>All were considered to have chronic ear infections requiring ventilation; 44 patients (59%) had received multiple antibiotic regimens prior to testing</td>
</tr>
<tr>
<td>Storgaard, Østergaard, et al. 1997</td>
<td>Danish children with acute otitis media (AOM)</td>
<td>20 (PCR on middle-ear aspirates)</td>
<td>1 (5)</td>
<td>Streptococcus pneumoniae was also isolated in the PCR positive AOM case</td>
</tr>
<tr>
<td></td>
<td>Danish children with otitis media with effusion (OME)</td>
<td>53 (PCR on middle-ear aspirates)</td>
<td>5 (9)</td>
<td>PCR positive in 8 samples from 5 children whose mean age was greater than that of the PCR-negative children with OME</td>
</tr>
<tr>
<td>Block, Hammerschlag, et al. 1997</td>
<td>Consecutive children with AOM or refractory AOM from rural Kentucky</td>
<td>101 (culture and PCR of tympanocentesis aspirate)</td>
<td>8 (8)</td>
<td>Copathogens were isolated in 6/8 cases; 2 additional patients with C. pneumoniae culture negative AOM and 2/50 healthy control children were positive by either culture or PCR in the nasopharynx</td>
</tr>
</tbody>
</table>

in the month preceding their parents' illnesses; all had serologic evidence of previous C. pneumoniae infection.

Family #3

Blasi et al. reported on eight members of two Italian families, six of whom seroconverted and/or had C. pneumoniae identified on pharyngeal swabbing. These six became ill while two other family members did not seroconvert and remained well. Clinical manifestations ranged from pneumonia and bronchitis (with and without pharyngitis) to a few days of dry cough that resolved without treatment. Only one patient showed a biphasic illness presentation. Again, respiratory illnesses were sometimes resistant to treatment with beta-lactams but macrolides were effec-
years. During this observation period, serology and PCR testing revealed a failure to eradicate *C. pneumoniae* despite several prolonged courses of macrolides or tetracyclines, although reinfection could not be ruled out as a cause for persistent detection.

Some observations from the studies selected for Table 3 are that wheezing was often reported in conjunction with acute bronchitis. The clinical implications for this finding for the development of persistent wheezing and asthma are beyond the scope of this article. Interested readers are referred to a recent review. Of interest is the finding of Wright et al. that 20% of studies is probably a result of different populations, diagnostic criteria, etc. By far the highest percentages due to *C. pneumoniae* for bronchitis, otitis, and tonsillitis/laryngitis were reported from an Ear, Nose, and Throat specialty clinic in Japan. Community-based rates were lower for all three conditions.

TABLE 5. Proportion of Pharyngitis/Tonsillitis Attributed to *Chlamydia pneumoniae* Respiratory Infection in Selected Patient Populations (% of pharyngitis/tonsillitis caused by *C. pneumoniae* infection)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Population</th>
<th>Total cases of pharyngitis/tonsillitis (diagnostic test used)</th>
<th>No. (%) due to Chlamydia pneumoniae</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komaroff, Aronson, et al. 1983</td>
<td>Adults outpatients with sore throat encountered in four general medical practices in New England</td>
<td>43 (four-fold titer increase)</td>
<td>9 (21)</td>
<td>The 43 tested patients were derived from a stratified random sample of 267 patients with pharyngitis only. An additional 4% patients with pharyngitis and other respiratory tract symptoms also had a 21% estimated prevalence of chlamydial infection.</td>
</tr>
<tr>
<td>Komaroff, Branch, et al. 1989</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grayston, Kuo, et al. 1986</td>
<td>University students from Seattle, Washington</td>
<td>150 (culture, acute antibody)</td>
<td>1 (1)</td>
<td>No evidence for acute C. pneumoniae infection was found in 28 students with sinusitis and otitis media, or in 68 with fever of unknown origin (FUO).</td>
</tr>
<tr>
<td>Huovinen, Lahtonen, et al. 1989</td>
<td>Finnish adult outpatients with sore throat</td>
<td>106 (acute antibody)</td>
<td>9 (8)</td>
<td>An additional 9% had Mycoplasma pneumoniae infection and 23% had beta-hemolytic strep.</td>
</tr>
<tr>
<td>Hashiguchi, Ogawa, et al. 1992</td>
<td>Children and adults with tonsillitis seen at an ear, nose and throat outpatient clinic in Tokyo, Japan</td>
<td>52 – tonsillitis (acute antibody) 32 – laryngitis (acute antibody)</td>
<td>10 (19) 8 (24)</td>
<td>Only 1 (3%) of 38 healthy controls had acute antibody. All serologically diagnosed patients improved with macrolide or tetracycline therapy.</td>
</tr>
<tr>
<td>Hargreaves, Zajac, et al. 1994</td>
<td>US Airforce basic trainees with pharyngitis</td>
<td>226 (acute antibody)</td>
<td>4 (2)</td>
<td>1 (1%) of 118 asymptomatic basic trainees had acute antibody.</td>
</tr>
<tr>
<td>Hone, Moore, et al. 1994</td>
<td>Children and adults admitted to an Irish hospital with severe, acute tonsillitis</td>
<td>51 (DFA, acute antibody)</td>
<td>0 (0)</td>
<td>DFA test was positive in one patient who did not seroconvert.</td>
</tr>
</tbody>
</table>

C. pneumoniae as a Cause for Specific Non-pneumonic Respiratory Diagnoses

Tables 3 to 5 illustrate that *C. pneumoniae* has been documented as a cause for 85 (10%) of 1227 bronchitis cases (range 1 to 23%), 26 (8%) of 326 cases of otitis (range 0 to 18%), and 40 (8%) of 510 cases of pharyngitis/laryngitis/tonsillitis (range 0 to 24%). Again, the wide variation in prevalence noted between...
patients with a persistent cough lasting more than 2 weeks were found to fulfill serologic criteria for acute infection. Conjunctivitis is rarely reported in *C. pneumoniae* infection.

Otitis Media

No conventional bacterial pathogen can be isolated in 20 to 40% of patients with acute otitis media (AOM), which is distinct from otitis media with effusion (OME) that is chronic, asymptomatic, and less associated with bacterial pathogens. *C. pneumoniae* was identified by culture and/or PCR in a total of 20 (7%) of 292 middle-ear aspirates (7% of AOM and 6% of OME), suggesting that this organism should be added to the list of pathogens that is associated with both acute and chronic otitis media. Causation needs to be further assessed by response to treatment.

Pharyngitis/Tonsillitis

In 1983, Komaroff et al. first reported on 9 (21%) of 43 adults with pharyngitis who has fourfold titer increases in *Chlamydia trachomatis* antibodies that were later acknowledged to be due to cross-reactivities with *C. pneumoniae*. The percentage of pharyngitis in more recent community-based studies has been lower: 14 (3%) of 482 (range 1 to 8%). An interesting recent report illustrates the potential for chlamydial persistence: Falck et al. reported on a series of patients with chronic pharyngitis who had persistent detection by PCR in throat swabs and positive immunochemical staining evidence for presence of the organism.

TABLE 6. Proportion of Miscellaneous Acute Conditions Associated with *Chlamydia pneumoniae* Infection in Selected Patient Populations (% of disease attributed to *C. pneumoniae* infection)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Population</th>
<th>Total cases (diagnostic test used)</th>
<th>No. (%) due to Chlamydia pneumoniae</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makela, Puuhakka, et al. 1998</td>
<td>Young Finnish adults with common cold symptoms</td>
<td>200 (four-fold antibody titer rise)</td>
<td>4 (2)</td>
<td>Viral etiology was established for 138 (69%). Evidence of non-chlamydial bacterial infection was found in 3 patients (1 M. pneumoniae, 1 H. influenzae, 1 S. pneumoniae).</td>
</tr>
<tr>
<td>Sinusitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hashiguchi, Ogawa, et al. 1992</td>
<td>Children and adults with sinusitis seen at an ear, nose and throat outpatient clinic in Tokyo, Japan</td>
<td>19 (acute antibody)</td>
<td>2 (10)</td>
<td>Only 1 (3%) of 38 healthy controls had acute antibody.</td>
</tr>
<tr>
<td>Bronchiolitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khan and Potter 1996</td>
<td>Infants hospitalized with bronchiolitis in England</td>
<td>152 (PCR on nasal aspirate)</td>
<td>2 (1)</td>
<td>PCR for Chlamydia trachomatis was positive in 26 (17%) and was found in patients up to 2 years of age.</td>
</tr>
<tr>
<td>Kawasaki’s Disease</td>
<td>Japanese infants and children hospitalized with active Kawasaki Disease</td>
<td>72 (IgM antibody)</td>
<td>11 (15)</td>
<td>IgM antibody was found in 8 (3.5%) of 229 healthy age- and sex-matched controls (p>0.01).</td>
</tr>
</tbody>
</table>

In pharyngeal biopsies. They also reported that the optimal antibiotic regimen to eradicate these chronic *C. pneumoniae* infections was not found.

Sinusitis/Bronchiolitis

A few studies have reported on *C. pneumoniae* infection in the common cold, acute sinusitis, infant bronchiolitis and as a potential cause for Kawasaki disease (Table 6).

A syndrome termed "chlamydial cold" characterized by slight sputum (70%), chest pain (35%), nausea and vomiting (21%), fever for several days (40%), rhinorrhea (69%), malaise (60%), sore throat (51%), and very slight eye discharge (14%) was relatively common during an epidemic of *C. pneumoniae*
infection in a Japanese middle-school population. However, in a nonepidemic situation in a Finnish general population, *C. pneumoniae* infection was rarely (2%) identified as a cause for the "common cold." Studies from a referral-based ENT clinic population in Japan found that *C. pneumoniae* could be isolated from the maxillary sinus of a patient with purulent sinusitis and that *C. pneumoniae* was responsible for 2 (11%) of 19 cases of acute sinusitis (Table 6). The percentage of acute sinusitis due to this infection in the general population has not been reported. One case report of a patient who developed chronic sinusitis and bronchitis after an acute infection raises the possibility that persistent infection might lead to chronic respiratory sequelae. This possibility is intriguing but has not been sufficiently investigated.

Chlamydia pneumoniae as a cause for infant bronchiolitis appears to be rare but infection by *Chlamydia trachomatis* in this age group is worth considering as a possible treatable cause for persistent respiratory symptoms (Table 5). Finally, a serologic study of patients with Kawasaki's disease found that 15% of them had IgM antibody, suggesting acute *C. pneumoniae* infection. The clinical significance of this finding is currently unknown but also deserves investigation.

Recognition and Treatment

A few clinical clues may be helpful in enhancing the judicious use of appropriate anti-chlamydial antibiotics directed against the subgroup of patients with acute respiratory illnesses suspected to be caused by acute *C. pneumoniae* infection. It must be recognized, however, that the science supporting these recommendations is minimal and needs butressing, and that readily available, accurate and inexpensive diagnostic testing would be highly desirable.

Clinical clues to acute *C. pneumoniae* infection that I have found correlate sometimes with diagnostic testing and clinical response are: (1) a prolonged clinical course and/or persistence of symptoms, i.e., 2 to 3 weeks or longer, (2) a history of no response, partial response, or relapse of symptoms after treatment with beta-lactam and/or sulphonamide-based antibiotics, (3) a "biphasic illness" presentation and (4) development of chronic respiratory sequelae such as persistent wheezing (asthma), chronic bronchitis or non-descript persistent URI-type symptoms (including sinus drainage) following acute illness. The important theory that chronic *C. pneumoniae* infection can cause persistent cardiopulmonary diseases has been discussed elsewhere.

What antibiotic treatment regimens are effective in managing acute non-pneumonic *C. pneumoniae* respiratory infections? The most widely recommended agents are macrolides and tetracyclines; clinical experience with quinolones is limited.

Beta-lactams may suppress chlamydial growth but are not cidal. Sulfonamide-based antibiotics, while effective against *C. trachomatis*, are ineffective against *C. pneumoniae*. Erythromycin base, if tolerated, is a useful agent although doxycycline may be better tolerated, especially if treatment is prolonged (see below). The new azalide azithromycin is also clinically effective.

At this time, choice between these newer agents should be based on tolerability, cost and convenience, since there are no published head-to-head comparisons of efficacy or effectiveness for any of the agents. Finally, it should be mentioned that persistent culture-positivity following clinical resolution of illness after any of these treatments seems to be common but the clinical implications of this observation remain to be completely delineated.

After choice of an antichlamydial antibiotic to treat an acute illness suspected to be caused by *C. pneumoniae*, what are the next most important considerations? In my opinion, the three next most important things to remember about antibiotic treatment of *C. pneumoniae* infection are *duration, duration, and duration*. Relapse of illness may follow conventional (7 to 10 day) courses of appropriate antibiotics, therefore longer courses (2 or three weeks) have been recommended. I will not hesitate to treat for three weeks (sometimes even longer) a persistent respiratory illness that I know or believe may be caused by *C. pneumoniae*. My motto in this era of antibiotic overuse for viral-type respiratory illnesses is "treat adequately, or not at all."

Conclusions

About 70% of acute *C. pneumoniae* infections are asymptomatic or produce minimal symptoms that do not trigger a medical encounter unless the symptoms are persistently bothersome. The remaining 30% of infections cause pneumonia or acute non-pneumonic respiratory syndromes, mainly bronchitis, pharyngitis/laryngitis, sinusitis, or otitis separately or in combination. In general, these illnesses are indistinguishable from those caused by respiratory viruses or other atypical organisms such as *Mycoplasma pneumoniae*. Therefore, widespread recognition of the importance of *C. pneumoniae* infection by practicing clinicians, including its diagnosis and therapy, must await the development and dissemination of rapid, reliable and inexpensive diagnostic tests for identification of this important respiratory pathogen.

Suggested Reading

